skip to main content


Search for: All records

Creators/Authors contains: "Ezeobi, Uchenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Network intrusion detection systems (NIDS) today must quickly provide visibility into anomalous behavior on a growing amount of data. Meanwhile different data models have evolved over time, each providing a different set of features to classify attacks. Defenders have limited time to retrain classifiers, while the scale of data and feature mismatch between data models can affect the ability to periodically retrain. Much work has focused on classification accuracy yet feature selection is a key part of machine learning that, when optimized, reduces the training time and can increase accuracy by removing poorly performing features that introduce noise. With a larger feature space, the pursuit of more features is not as valuable as selecting better features. In this paper, we use an ensemble approach of filter methods to rank features followed by a voting technique to select a subset of features. We evaluate our approach using three datasets to show that, across datasets and network topologies, similar features have a trivial effect on classifier accuracy after removal. Our approach identifies poorly performing features to remove in a classifier-agnostic manner that can significantly save time for periodic retraining of production NIDS. 
    more » « less
  2. The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker’s injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedulebased attacks. 
    more » « less
  3. The smart city landscape is rife with opportunities for mobility and economic optimization, but also presents many security concerns spanning the range of components and systems in the smart ecosystem. One key enabler for this ecosystem is smart transportation and transit, which is foundationally built upon connected vehicles. Ensuring vehicular security, while necessary to guarantee passenger and pedestrian safety, is itself challenging due to the broad attack surfaces of modern automotive systems. A single car contains dozens to hundreds of small embedded computing devices known as electronic control units (ECUs) executing 100s of millions of lines of code; the inherent complexity of this tightly-integrated cyber-physical system (CPS) is one of the key problems that frustrates effective security. We describe an approach to help reduce the complexity of security analyses by leveraging unsupervised machine learning to learn clusters of messages passed between ECUs that correlate with changes in the CPS state of a vehicle as it moves through the world. Our approach can help to improve the security of vehicles in a smart city, and can leverage smart city infrastructure to further enrich and refine the quality of the machine learning output. 
    more » « less